1.The radius of a circle is 13 cm and the length of one of its chords is 10 cm. Find the distance of chord from the centre.
(a) 8 cm
(b) 10 cm
(c) 9 cm
(d) 12 cm
2.In the given figure PQ = 12, BQ = 8cm, then the length of chord AB : -
(a) 10 cm
(b) 4√5 cm
(c) 4 cm
(d) 18 cm
3.The value of x will be :
(a) 70°
(b) 90°
(c) 60°
(d) 75°
4.The value of x : -
(a) 10 cm
(b) 9 cm
(c) 7.5 cm
(d) 11 cm
5.In the given figure ABCD is a cyclic quadrilateral and O is the centre of the circle. If ∠BOC = 138, then ∠BDC will be
(a) 112°
(b) 111°
(c) 109°
(d) None of these
6.In the given figure, O is the centre of the circle, then the value of x will be : -
(a) 40°
(b) 90°
(c) 45°
(d) 30°
7.In the given figure, PA and PB are tangents from a point P to a circle such that PA = 6 cm and ∠APB = 60°. What is the length of the chord AB?
(a) 12cm
(b) 8cm
(c) 9cm
(d) 6cm
8.In the given figure, AB = AC and ∠ABC = 50°, ∠BDC : -
(a) 60°
(b) 80°
(c) 100°
(d) 90°
9.In the given figure, ∆ABC is an equilateral triangle. Find ∠BEC.
(a) 60°
(b) 120°
(c) 80°
(d) 90°
10.In the given figure, AD ∥ BC, if ∠ABC =72°, then ∠BCD = ?
(a) 108°
(b) 36°
(c) 90°
(d) 72°
ANSWERS AND SOLUTION:
1.(d)
The perpendicular from the centre of a circle to chord bisects the chord.
so AL = LB = 1/2 AB = 5 cm
OA^2 = OL^2 + AL^2
=> 13^2 = OL^2 + 5^2
=> OL^2 = 13^2 – 5^2
=> OL = 12 cm
2.(a) PQ^2 = BQ * AQ
=> (12)^2 = AQ * 8 =>AQ = 18 cm
so AB = AQ – BQ = 18 – 8 = 10 cm
3.(d) ∠ACB = ∠ADB = 20°
(made by same are AB)
so In triangle ACB, ∠x° = 180°-85° – 20° = 75°
4.(d) PA * PC = PB * PD
=> 14 * 9 = (7 + x) * 7
=> 18 = 7 + x => x = 11 m
5.(b) ∠BAC = 1/2 * 138° = 69°
so ∠BDC = 180° – 69° = 111°
6.(c) In triangle OBC
OB = OC so ∠B= ∠C=45°
so ∠D= ∠C
(made by same arc AB)
so ∠D=x°=45°
7.(d) PA = PB
so ∠PAB= ∠PBA
Also, ∠PAB+ ∠PBA+ ∠APB=180°
=> ∠PAB+ ∠PBA=120°
so ∠PAB= ∠PBA=60°
i.e ∆PAB is an equilateral triangle.
AB = 6 cm
8.(b)
AB = AC => ∠ACB=∠ABC50°
so ∠BAC=180°-(50+50)= 80°
so ∠BDC= ∠BAC=80°
(angle by same are BC)
9.(b) ∠BAC=60°
so ∠BEC=180°-60°=120°
10.(d) ∠D=180° 72°=108°
so ∠BCD=180°-108°
= 72°(∵AD ∥ BC)
(a) 8 cm
(b) 10 cm
(c) 9 cm
(d) 12 cm
2.In the given figure PQ = 12, BQ = 8cm, then the length of chord AB : -
(a) 10 cm
(b) 4√5 cm
(c) 4 cm
(d) 18 cm
3.The value of x will be :
(a) 70°
(b) 90°
(c) 60°
(d) 75°
4.The value of x : -
(a) 10 cm
(b) 9 cm
(c) 7.5 cm
(d) 11 cm
5.In the given figure ABCD is a cyclic quadrilateral and O is the centre of the circle. If ∠BOC = 138, then ∠BDC will be
(a) 112°
(b) 111°
(c) 109°
(d) None of these
6.In the given figure, O is the centre of the circle, then the value of x will be : -
(a) 40°
(b) 90°
(c) 45°
(d) 30°
7.In the given figure, PA and PB are tangents from a point P to a circle such that PA = 6 cm and ∠APB = 60°. What is the length of the chord AB?
(a) 12cm
(b) 8cm
(c) 9cm
(d) 6cm
8.In the given figure, AB = AC and ∠ABC = 50°, ∠BDC : -
(a) 60°
(b) 80°
(c) 100°
(d) 90°
9.In the given figure, ∆ABC is an equilateral triangle. Find ∠BEC.
(a) 60°
(b) 120°
(c) 80°
(d) 90°
10.In the given figure, AD ∥ BC, if ∠ABC =72°, then ∠BCD = ?
(a) 108°
(b) 36°
(c) 90°
(d) 72°
ANSWERS AND SOLUTION:
1.(d)
The perpendicular from the centre of a circle to chord bisects the chord.
so AL = LB = 1/2 AB = 5 cm
OA^2 = OL^2 + AL^2
=> 13^2 = OL^2 + 5^2
=> OL^2 = 13^2 – 5^2
=> OL = 12 cm
2.(a) PQ^2 = BQ * AQ
=> (12)^2 = AQ * 8 =>AQ = 18 cm
so AB = AQ – BQ = 18 – 8 = 10 cm
3.(d) ∠ACB = ∠ADB = 20°
(made by same are AB)
so In triangle ACB, ∠x° = 180°-85° – 20° = 75°
4.(d) PA * PC = PB * PD
=> 14 * 9 = (7 + x) * 7
=> 18 = 7 + x => x = 11 m
5.(b) ∠BAC = 1/2 * 138° = 69°
so ∠BDC = 180° – 69° = 111°
6.(c) In triangle OBC
OB = OC so ∠B= ∠C=45°
so ∠D= ∠C
(made by same arc AB)
so ∠D=x°=45°
7.(d) PA = PB
so ∠PAB= ∠PBA
Also, ∠PAB+ ∠PBA+ ∠APB=180°
=> ∠PAB+ ∠PBA=120°
so ∠PAB= ∠PBA=60°
i.e ∆PAB is an equilateral triangle.
AB = 6 cm
8.(b)
AB = AC => ∠ACB=∠ABC50°
so ∠BAC=180°-(50+50)= 80°
so ∠BDC= ∠BAC=80°
(angle by same are BC)
9.(b) ∠BAC=60°
so ∠BEC=180°-60°=120°
10.(d) ∠D=180° 72°=108°
so ∠BCD=180°-108°
= 72°(∵AD ∥ BC)










No comments:
Post a Comment